NUMERICAL ANALYSIS

Assignment -5 (week 5)
Total Marks - 25
Posted on - 21/8/2017 (Monday);
To be submitted on or before-30/8/2017 (Wednesday), 23.59 hours.

Problems on

- Gauss quadrature three point method.
- Numerical Solution of ODE:

Taylor series Methods, Euler's Method.

INSTRUCTIONS

- This is a question paper cum answer booklet.
- Take a print out of this.
- Present the details of the computations of the solution of each problem which you will have to show in the space provided at the bottom of the page.
- Fill in the answers in the space provided below each question.
- Scan the booklet and submit it as a pdf file before the deadline for evaluation.

1. Use Gaussian three-point quadrature formula to evaluate $\int_{0}^{4} \frac{\operatorname{sint}}{t} d t$ and then Fill in the blanks.
(a) If $\int_{0}^{4} \frac{\operatorname{sint}}{t} d t=\int_{-1}^{1} F(x) d x$, then $F(x)=$
(b) $\int_{0}^{4} \frac{\operatorname{sint}}{t} d t \simeq$ \qquad . $(2+2=4$ marks $)$

Show your work for the solution of problem 1 in the space provided below.
2. Solve $y^{\prime}=x y+y^{2}-2 ; y(0)=1$ using Euler's method with step-size $h=0.5$ and estimate $y(1)$.
Fill in the blanks:
(a) $y(0.5) \simeq$ \qquad
(b) $y(1) \simeq$ \qquad . ($2+2=4$ marks)

Show your work for the solution of problem 2 in the space provided below.
3. Use Taylor-series method of order 2 to solve $y^{\prime}=x y+y^{2}-2, y(0)=1$ with step-size $h=0.5$ and estimate $y(1)$.
Fill in the blanks:
(a) $y^{\prime}(0)=$ \qquad (b) $y^{\prime \prime}(0)=$ \qquad
(c) $y(0.5) \simeq$ \qquad (d) $y^{\prime}(0.5)=$ \qquad
(e) $y^{\prime \prime}(0.5)=$ \qquad (f) $y(1.0) \simeq$ \qquad . $(6 \times 1=6$ marks $)$

Show your work for the solution of problem 3 in the space provided below.
4. (a) Using Taylor-series method of order 3, determine $y(1.3)$ given that $\frac{d y}{d x}=x y^{\frac{1}{3}}$; $y(1)=1$, taking step-size $h=0.3$.
(b) Solve $\frac{d y}{d x}=x y^{\frac{1}{3}} ; y(1.2)=1.22787$ and determine $y(1.3)$ using Taylor series method of order 3 .
Fill in the blanks:
(a) $y^{\prime}(1)=$ \qquad $y^{\prime \prime}(1)=$ \qquad $y^{\prime \prime \prime}(1)=$ \qquad $y(1.3)=$ \qquad . $(1+2=3$ marks $)$
(b) $y^{\prime}(1.2)=$ \qquad $y^{\prime \prime}(1.2)=$ \qquad $y^{\prime \prime \prime}(1.2)=$ \qquad $y(1.3)=$ \qquad . $\quad(1+2=3$ marks $)$

Show your work for the solution of problem 4 in the space provided below.
5. Consider the IVP $y^{\prime}=y+x ; y(1)=2$. If the error in $y(x)$ obtained from the first four terms of the Taylor series is to be less than 5×10^{-4} after rounding, find x. Fill in the blanks:
(a) $y^{\prime}(1)=$ \qquad (b) $y^{\prime \prime}(1)=$ \qquad
(c) $y^{\prime \prime \prime}(1)=$ \qquad (d) $R_{4}=$ \qquad
(e) $x \simeq$ \qquad .

$$
(5 \times 1=5 \text { marks })
$$

Show your work for the solution of problem 5 in the space provided below.

